A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

نویسندگان

  • Keun-Chang Kwak
  • Dong-Hwa Kim
چکیده

This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Systematic Approach to Linguistic Fuzzy Modeling Based on Input - Output Data

A new systematic algorithm to build adaptive linguistic fuzzy models directly from input-output data is presented in this paper. Based on clustering and projection in the input and output spaces, significant inputs are selected, the number of clusters is determined, rules are generated automatically, and a linguistic fuzzy model is constructed. Then, using a simplified fuzzy reasoning mechanism...

متن کامل

Sensitivity Analysis for Type-1 and Type-2 Tsk Fuzzy Models

In this paper, subtractive clustering method is combined with least squares estimation algorithms to pre-identify a type-1 Takagi-Sugeno-Kang (TSK) fuzzy model from input/output data. Then the type-2 fuzzy theory is used to expand the type-1 model to a type-2 model. A sensitivity analysis is used to ascertain how a type-1 TSK model output depends upon the pre-initialized parameters and determin...

متن کامل

FRULER: Fuzzy Rule Learning through Evolution for Regression

In regression problems, the use of TSK fuzzy systems is widely extended due to the precision of the obtained models. Moreover, the use of simple linear TSK models is a good choice in many real problems due to the easy understanding of the relationship between the output and input variables. In this paper we present FRULER, a new genetic fuzzy system for automatically learning accurate and simpl...

متن کامل

Linguistic Approximation of TSK Fuzzy Models with Multi-objective Neuro-Evolutionary Algorithms

In this paper, a multi-objective constrained optimization model is proposed to improve interpretability of TSK fuzzy models. This approach allows a linguistic approximation of the fuzzy models. Three different multi-objective evolutionary algorithms (MONEA, ENORA and NSGA-II) are used together with neural network techniques. These algorithms are checked out in the approximation of a dynamic non...

متن کامل

Identification and Fuzzy Controller Design for Nonlinear Uncertain Systems with Input Time-Delay

This paper considers the identification and fuzzy controller design for nonlinear uncertain systems in presence of unknown input time-delay. Firstly, a time-delay Takagi-Sugeno-Kang (TSK) type fuzzy neural system (TDFN) is proposed to identify a class of nonlinear input time-delay systems. The input-output signals of nonlinear systems are used to identify the system dynamics and unknown time-de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005